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The damping dependence of the thermally activated reversal time of the magnetization of noninteracting
uniaxial single-domain ferromagnetic particles is determined using Langevin dynamics simulations and the
analytic Néel-Brown theory with the latter given both in the form of the exact matrix-continued fraction
solution of the governing Fokker-Planck equation and its accompanying asymptotes for the escape rate. The
reversal time from Langevin dynamics simulations is extremely sensitive to the initial and switching conditions
used. Thus if the latter are chosen inappropriately the simulation result may markedly disagree with the
analytic one particularly for low damping, where the precessional effects dominate, so that complete agreement
can only be obtained by correctly choosing these conditions.
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I. INTRODUCTION

Fine single-domain ferromagnetic particles are character-
ized by thermal instability of the magnetization M�t� result-
ing in superparamagnetism because each behaves in a mag-
netic sense as a giant Langevin paramagnet. The initial
analytic treatment of the thermal fluctuations due to Néel1

based on classical transition-state theory �TST� was further
developed by Brown2 and is consequently known as the
Néel-Brown theory. This treatment utilizes the classical
theory of Brownian motion �which unlike TST accounts for
the departure from thermal equilibrium due to the energy
interchange between a particle and its heat bath� with the
Landau-Lifshitz-Gilbert �LLG� equation augmented by
white-noise fields as Langevin equation. This equation is
then used to derive the particular Fokker-Planck equation
�FPE� governing the time evolution of the probability density
function W of magnetization orientations on a sphere of ra-
dius Ms. Here Ms is the saturation magnetization assumed to
be constant so that the only variable is the orientation of M
and the relevant FPE is2,3

2�N
�W

�t
=

�

�
n · ��V � �W� + � · ��W + �W � V� . �1�

In Eq. �1�, �=� /�n is the gradient operator on the unit
sphere, n is a unit vector along M, V is the free-energy
density comprising the nonseparable Hamiltonian of the an-
isotropy and Zeeman energy densities, �=v / �kT�, v is the
volume of the single-domain ferromagnetic particle, k is
Boltzmann’s constant, T is the absolute temperature, � is the
dimensionless damping constant, �N=�0��+�−1�, �0
=�Ms / �2�� is the characteristic free diffusion time of M�t�,
and � is the gyromagnetic ratio.

One of the most important physical parameters is the
magnetization switching �or reversal� time � due to thermal
agitation over the internal magnetocrystalline energy barrier

of the particle. In the Néel-Brown model,2,3 the reversal time
may be calculated numerically for a given anisotropy poten-
tial as the inverse of the smallest nonvanishing eigenvalue �1
of the Fokker-Planck operator in Eq. �1�. However, a practi-
cal disadvantage of the �1

−1 method is that it is, in principle,
impossible to write �1 in closed form since it is the smallest
nonvanishing root of the secular equation of the system of
differential recurrence relations for the statistical moments
resulting from separation of the variables. Accordingly much
effort has been expended in finding analytic approximations
for �1. Thus the high barrier �low-temperatures� asymptotes,
which is the case of greatest interest, are obtained by extend-
ing the Kramers theory4,5 of thermally activated escape of
particles over a potential barrier to the magnetization rever-
sal. The Kramers theory4 was originally given for point par-
ticles of one degree of freedom coupled to a heat bath gov-
erned by a FPE, where the position and the momentum
constitute the canonical variables and known as Klein-
Kramers equation. However, the magnetization reversal
problem is, in general, characterized by the nonseparable
Hamiltonian3,5 of the anisotropy and Zeeman energies so that
two degrees of freedom are involved, namely, the polar and
azimuthal angles �	 ,
�. Hence modifications to the original
Kramers treatment are necessary. A particular simple case of
the magnetization Kramers problem first noted by Brown2 is
axial symmetry. Then the Hamiltonian is simply a function
of 	 hence it is possible2 to find a high barrier asymptotic
formula for �1 which is valid for all values of the coupling to
the heat bath � all that is necessary being a knowledge of the
stationary points of the potential. In addition, for the simplest
uniaxial anisotropy potential of the form sin2 	 it is also
possible to write down a formula valid for all barrier
heights.22 The situation for nonaxially symmetric potentials
is, however, much more complicated. The Kramers analysis
for such potentials having been initiated by Smith and de
Rozario6 was continued by Brown3 who formally extended
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the so-called Kramers intermediate-to-high damping �IHD�
escape rate4,5 to the magnetization by evaluating �1 in terms
of the escape rate �ij

IHD from well i to well j as

�1 � �ij
IHD = �ij

TST�0���/
0 �2�

with �ij
TST as the escape rate for TST as applied to the mag-

netization, namely,

�ij
TST = �
i/2��e−�V, �3�

where �V=��V0−Vi� is the dimensionless barrier height,

i=��c1

�i�c2
�i� /Ms and 
0=��−c1

�0�c2
�0� /Ms are the well and

saddle angular frequencies, respectively, and

�0��� =
�

4�0�� + �−1�
���c2

�0� − c1
�0��2 − 4�−2c1

�0�c2
�0�

− c1
�0� − c2

�0��

is the damped saddle angular frequency. We emphasize that
Eq. �2� is simply a special case of Langer’s extension7 of the
Kramers IHD escape rate to many degrees of freedom and
nonseparable Hamiltonians so yielding the upper bound of
the escape rate. Clearly for vanishing damping, �→0, the
IHD escape rate �ij

IHD from Eq. �2� reduces to the TST escape
rate �ij

TST, which is obviously independent of �. However
this is not the true VLD limit or energy-controlled diffusion,
where the energy loss per cycle of the almost periodic mo-
tion of the magnetization on the saddle-point energy �escape�
trajectory is much less than the thermal energy, as noted by
Klik and Gunther.8 Rather, it comprises the intermediate
damping limit corresponding to Néel’s TST result.1 Recog-
nizing this Klik and Gunther8 derived the correct VLD mag-
netization Kramers escape rate �ij

VLD, viz.,

�ij
VLD � �Si�ij

TST, �4�

where the dimensionless action at the saddle-point energy Si
is defined as

Si = ��
V=V0

�1 − z2�
�V

�z
d
 −

1

1 − z2

�V

�

dz , �5�

and z=cos 	. The conditions of applicability of these IHD
and VLD solutions for superparamagnets are defined by �
�1 and ��1, respectively. However, experimental values of
� usually lie in the Kramers turnover region characterized by
10−2���1. Hence, Coffey et al.5,9 have extended the
Mel’nikov-Meshkov formalism10 connecting VLD and IHD
escape rates for point particles, to describe the relaxation
time of the magnetization. Thus they obtained for the escape
rate �ij from a single well over one saddle point

�ij = A��Si��ij
IHD = A��Si�


i�0���
2�
0

e−�V, �6�

where the depopulation factor A is

A��� = exp� 1

�
	

0

� ln
1 − exp�− ���2 + 1/4���
�2 + 1/4

d�� .

The contour integral in Eq. �5� is taken along the critical-
energy trajectory or separatrix 	�
� 
V=V0

on which the mag-

netization may reverse by passing through the saddle point�s�
of the energy density V0. Equation �6� agrees closely with the
numerical solution for the reversal time obtained via the FPE
�Eq. �1�� for all �, e.g.11,12 It also agrees with a number of
computer simulations13–15 and with experiments16 emphasiz-
ing the vital importance of an accurate determination of the
damping dependence of the escape-rate prefactor
A��Si��0���
i / �2�
0� in Eq. �6�.

The above considerations concerning the damping depen-
dence of the escape rate are of the upmost importance in both
Monte Carlo �MC� and Langevin dynamics simulations of
the reversal time of the magnetization of fine
particles.13–15,17–21 In analyzing the results of such simula-
tions, the value of the analytical solutions of the Néel-Brown
theory for �1

−1 provide rigorous benchmark solutions with
which they must comply. However, certain simulations17–21

pertaining to that theory seem to predict results for the rever-
sal time at variance with it, a question which requires de-
tailed examination, the explanation of which is the prime
objective of this paper. Indeed, simulated and analytical es-
timations of the relaxation time for uniaxial particles some-
times differ by more than one order of magnitude17 and the
reason for such a pronounced difference has hitherto re-
mained profoundly unclear. Furthermore, in Ref. 21, numeri-
cal estimates of the switching time were obtained by using
the FPE to link the MC and the Langevin micromagnetic
schemes, both for noninteracting as well as interacting arrays
of fine particles. Moreover, close numerical convergence
�hitherto not obtained19,20� is claimed between the MC
method and Langevin dynamics simulation results. Authors
of Ref. 21 also claimed that their Metropolis MC method is
accurate for a large range of damping factors �, unlike pre-
vious time-quantified MC methods19,20 which fail for small
�, where the precessional motion dominates. However, these
simulated results21 do not reproduce the known Kramers-
Brown asymptotic solutions for the reversal time at low
damping. In view of the foregoing discrepancy, we summa-
rize the conditions allowing one to derive asymptotic formu-
las for the escape rate from the FPE via the Kramers method
and we demonstrate that if these conditions are systemati-
cally applied in the computer simulations then they too can
accurately reproduce the analytic asymptotes. The compari-
son between analytical and simulation approaches will be
illustrated via a single-domain ferromagnetic particle pos-
sessing uniaxial anisotropy with a uniform field applied at an
angle to the anisotropy axis.

II. LANGEVIN DYNAMICS SIMULATIONS

Langevin dynamics simulations in micromagnetics having
been originally introduced by Lyberatos and Chantrell23 were
subsequently further developed by many authors17,18,24–30

�for a review see Ref. 26 and references therein�. This devel-
opment followed the seminal work of Brown.2,3 He, as men-
tioned above, included thermal fluctuations in the dynamics
of an ensemble of noninteracting macrospins in order to de-
scribe the deviations from the average trajectory and so for-
mally introduced random fields in the LLG for the time evo-
lution of M�t� which then becomes the Langevin equation of
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the process. These thermal fields were supposed uncorrelated
both in space and time, and so were represented by Gaussian
white noise allowing one to construct a FPE. Brown also
showed how to evaluate the spectral density of the thermal
fields following Einstein’s method22 by using the fluctuation-
dissipation theorem and requiring the equilibrium distribu-
tion function of the orientations of the magnetization M�t� to
coincide with the Boltzmann distribution. The concept of a
fluctuating thermal field was also generalized to interacting
particles,24,27,31 hastening the development of thermal micro-
magnetics.

Following the standard approach of micromagnetics, we
write �utilizing the LLG� the Langevin equation for the dy-
namics of the magnetization vector M for the particular case
of a uniaxial single-domain particle in the presence of a dc
external magnetic field H applied at an arbitrary angle � to
the easy axis as

dM

dt
=

�

1 + �2 �M � �Hef f + h��

+
��Ms

−1

1 + �2 
�M � �Hef f + h�� � M� , �7�

where Hef f =−�MV=H+HK cos 	ez, HK=2K /Ms, K is the
anisotropy constant, ez is a unit vector along the z axis, u
=M /Ms, and the free-energy density V is

V�	,
� = ��−1�sin2 	 − 2h�cos � cos 	

+ sin � sin 	 cos 
�� . �8�

Here �=�K is the dimensionless barrier height parameter,
h=� / �2�� is the applied field parameter, and �=�MsH. The
thermal field h has the white-noise properties

�hi�t�� = 0, �hi�t�hj�t�� =
2�

��Ms
�ij��t − t��, i = x,y,z

meaning that the hi�t� components are statistically indepen-
dent and that hi�t� and hj�t� are uncorrelated at very short
times, i.e., much shorter than the time of a single precession
��ij is Kronecker’s symbol�. Now in order to yield the Bolt-
zmann equilibrium distribution, the Langevin Eq. �7� should
be interpreted as a Stratonovitch vector stochastic differential
equation.24 This is accomplished by a suitable choice of the
numerical integration scheme here that of Heun.24 The Heun
scheme is stable and is in accordance with the Stratonovich
stochastic calculus.26 We remark that several authors29,30

have argued that even simpler integration schemes, e.g., the
Runge-Kutta method, would reproduce the correct Boltz-
mann equilibrium distribution, if the magnetization vector is
renormalized at each time step.

Now the standard method of simulating the reversal time
� using Langevin dynamics is simply to average it over many
trajectory realizations. However, this method contains sev-
eral arbitrary assumptions. First of all in choosing the initial
conditions, it is customary to take them as the same for all
trajectories, for example, starting with all trajectories in an
equilibrium nonthermal magnetization minimum. Second, in
choosing the switching condition, it is supposed that the par-
ticle magnetization has switched if mz�m0, where m0 is a

characteristic value. However, if m0 is taken as the exact
transition �saddle� point, then the possibility that the magne-
tization may revert to the original minimum should be taken
into account. In the symmetric case, imposition of this
switching condition consequently yields a switching time ap-
proximately two times smaller than if one imposed the con-
dition close to a minimum. In the general case, using differ-
ent values of m0 can yield results deviating from each other
by a factor between 1 and 2 in the IHD regime.32 However,
for low damping, the deviation can be much more pro-
nounced due to precessional effects. The axially symmetric
case, when the applied field is parallel to the anisotropy axis
is, however, insensitive to the conditions discussed above.

The reversal time � can also be calculated by solving the
Langevin Eq. �7� �or its accompanying FPE� analytically for
�1 using matrix-continued fractions �MCF� �Refs. 22, 33,
and 34� �see appendix for details�. Here we shall also use this
independent method for comparison.

III. COMPARISON WITH ANALYTIC RESULTS
FOR A UNIAXIAL PARTICLE

The free-energy per unit volume V, Eq. �8�, has a bistable
structure with two minima at n1 and n2 separated by a po-
tential barrier with a saddle point at n0. The saddle point is
generally in the equatorial region while n1 and n2 lie in north
and south polar regions, respectively. For some critical ap-
plied field value hc���= �cos2/3 �+sin2/3 ��−3/2 the potential
�Eq. �8�� loses its bistable character so that the second mini-
mum becomes a point of inflexion. The corresponding uni-
versal �Mel’nikov� formula for the switching time � is given
by5

� � �IHD
A��S1 + �S2�
A��S1�A��S2�

, �9�

where the magnetization reversal time in the IHD limit is
given by

�IHD = ��12
IHD + �21

IHD�−1 �10�

and the actions S1 and S2 are given explicitly in Ref. 11. The
particular form of the depopulation factor in Eq. �9� arises
because both wells are involved in the relaxation process. We
emphasize that in the derivation of Eq. �9� it is assumed that
the potential is nonaxially symmetric. If the departures from
axial symmetry become small the nonaxially symmetric
asymptotic formulas for the escape rate obtained by the
method of steepest descents may be smoothly connected to
the axially symmetric results by means of suitable bridging
integrals. Such a procedure is described, e.g., in Refs. 5 and
35 for the particular case of a uniform field transversally
applied to the easy axis of the magnetization for a particle
with uniaxial anisotropy. We remark that for the axially sym-
metric case �=0, i.e., the dc field is parallel to the easy axis
of the particle, so that � is then given by Brown’s asymptotic
formula1
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� � �0�� + �−1�
�−3/2��

1 − h2 ��1 − h�e−��1 − h�2

+ �1 + h�e−��1 + h�2
�−1. �11�

We also emphasize the difference between the �overall� re-
versal time of the magnetization � and the inverse individual
escape rates �ij. In general, both depend on the energyscape
as well as the damping regime, however, they can differ con-
siderably from each other. For example, �i� for a potential
with two equivalent wells 1 and 2 and one saddle point, �
���12

VLD�−1 for ��1 and ���2�12
IHD�−1 for ��1; �ii� for a

potential with two strongly nonequivalent wells ��12��21�
and one saddle point, ����12

VLD�−1 for ��1 and �
���12

IHD�−1 for ��1, where �12
IHD is the escape rate from the

shallow well 1.
Comparison of the results of calculation of the switching

time from the Coffey et al. universal asymptotic Eq. �9�, the
exact matrix-continued fraction solution22,33 �both based on
the Néel-Brown theory�, and numerical Langevin simula-
tions are shown in Fig. 1 for various initial and switching
conditions. Clearly for IHD damping, ��1, both analytic
and numerical simulation methods yield very similar results.
However, for low damping, the switching time � predicted by
the numerical Langevin simulations can deviate substantially
from the universal turnover formula in Eq. �9� and may even
lie under the lower bound for � predicted by the TST theory.
Indeed, the results for low damping differ not only quantita-
tively but also qualitatively. Clearly, the particular choice of
initial conditions changes completely the low-damping be-
havior. For example, the switching time for low damping is
even smaller than the TST limit, if one starts with the initial
condition leading to a strong precession, where switching
can occur dynamically without crossing the saddle point. The
particular choice of the switching condition also plays an
important role. All the data in Fig. 1 represent significant

deviations from the expected analytical asymptote.
The contradictions which are simply artifacts of the initial

and switching conditions used in the simulations may be
explained �cf. our introduction� as follows. In IHD damping
the distribution function is almost everywhere the Boltzmann
distribution which holds in the depths of the well and only
very near the barrier does the distribution function slightly
deviate from the equilibrium distribution due to the slow
draining of particles across the barrier. However for ��1,
the damping is so small that it renders the assumption that
the magnetization approaching the saddle region from the
depths of the well has the Boltzmann distribution invalid.5,35

Hence, under these damping conditions, extreme care must
be taken in simulations, particularly in the choice of condi-
tions in the well and at the saddle point. In order to illustrate
this, we present amended results in Fig. 2, this time drawing
the initial conditions from the correct distribution which in
this instance is the Boltzmann distribution about the mini-
mum position. The foregoing amendment yields full agree-
ment with the expected theoretical value in contrast to the
results in Fig. 1. Interestingly enough, the MC scheme pre-
sented in Ref. 19 ignores precession hence, precessional
switching responsible for the decrease in the switching time
at low damping is impossible in this instance �see Fig. 1�.
The so-called “corrected MC scheme,” taking into account
the precessional effects and reported in Ref. 21 produced
results in agreement with the Langevin dynamics, however,
in disagreement with the theoretical asymptotic values only
because of the incorrect choice of initial conditions.

In Figs. 1 and 2 we also present the switching time ob-
tained by the MCF method. The actual Boltzmann distribu-
tion at equilibrium is implicit in the derivation of the MCF
method based on the separation of the variables in the FPE,
consequently, the results of that method are in perfect agree-
ment with the improved Langevin dynamics simulations.
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FIG. 1. �Color online� ��HK vs � for �=15, h=0.42, and �
=� /4. Solid line: MCF solution of the Landau-Lifshitz-Gilbert
equation. Symbols: simulation results using different initial and
switching conditions indicated in the figure. Dashed line: �IHD given
by Eq. �10�. The switching time is divided by two for the switching
condition mz�−0.9.
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ous values of �=0, � /4, and � /2, Solid lines: MCF solution. Sym-
bols: simulation results starting with initial conditions distributed
according to the Boltzmann distribution around the magnetization
minimum. The switching condition is indicated for each curve and
the switching time is divided by two for the switching condition
mz�−0.9.

KALMYKOV et al. PHYSICAL REVIEW B 82, 024412 �2010�

024412-4



IV. CONCLUSION

In the Kramers escape rate picture, the behavior of the
switching time � can be explained as follows. That time as a
function of the barrier height parameter � for large � is
approximately Arrhenius type and arises from an equilibrium
property of the system �namely, the Boltzmann distribution
at the bottom of the well�. On the other hand, the damping
dependence of � is due to nonequilibrium �dynamical� prop-
erties of the system and so is contained in the prefactor in
Eq. �6�, the detailed nature of which depends on the behavior
of the energy distribution function at the saddle points of the
magnetocrystalline anisotropy. For example, in the IHD re-
gime the distribution function at the saddle point is almost
the Boltzmann distribution, while in the VLD regime, the
region of nonequilibrium runs deep into the well so that the
Boltzmann distribution holds only very near the minimum.
The generalization of the Mel’nikov-Meshkov approach10 to
the magnetization escape rate given by Coffey et al.5,9 cor-
rectly accounts for the behavior of the distribution function
at the saddle point for all values of the damping allowing one
to evaluate the damping dependence of the switching time
providing a rigorous benchmark solution with which the
computer simulation must comply. One may conclude that
the numerical values of the switching time in the low-
damping regime crucially depend on the initial and switching
conditions so that drawing the initial conditions from the
Boltzmann distribution near the bottom of the well is abso-
lutely essential for the simulations to be consistent with the
Néel-Brown theory. We believe that most of the numerical
simulations in which large deviations from the analytical as-
ymptote have been reported were performed under condi-
tions incompatible with the assumptions underlying the
Néel-Brown theory. In this paper, we have presented a rigor-
ous procedure allowing one to comply with these conditions
leading to agreement between the results yielded by both
methods.
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APPENDIX: MATRIX-CONTINUED FRACTION
SOLUTION

In order to calculate the reversal time �, one can use the
matrix-continued fraction approach developed in Ref. 34.
The solution of the stochastic Langevin Eq. �7� or the corre-

sponding Fokker-Planck Eq. �1� reduces to the solution of an
infinite hierarchy of differential-recurrence equations for the
statistical moments cl,m�t�= �Yl,m��t� �averaged spherical har-
monics Yl,m�	 ,
�� governing the magnetization decay

d

dt
cl,m�t� = �

l�,m�

dl�,m�,l,mcl�,m��t� , �A1�

where dl�,m�,l,m are the matrix elements of the Fokker-Planck
operator in Eq. �1�. A method of derivation of the statistical
moment system Eq. �A1� for an arbitrary free energy is given
in Refs. 22 and 33. The solution of Eq. �A1� can always be
obtained by matrix-continued fractions.22 In essence, we
transform the moment system Eq. �A1� into a tridiagonal
vector recurrence equation

�N
d

dt
Cn�t� = Qn

−Cn−1�t� + QnCn�t� + Qn
+Cn+1�t� , �A2�

where Cn�t� are the column vectors arranged in an appropri-
ate way from cl,m�t� and Qn

− ,Qn ,Qn
+ are the matrices whose

elements are dl�,m�,l,m �for the problem in question they are
given explicitly in Refs. 22 and 34�. The exact solution of
Eq. �A2� for the Laplace transform of C1�t� is given by22

C̃1�s� = �N�1�C1�0� + �
n=2

� ��
k=2

n

Qk−1
+ �k�s�Cn�0��� ,

where the infinite matrix-continued fraction �n�s� is defined
by the recurrence equation

�n�s� = ��NsI − Qn − Qn
+�n+1�s�Qn+1

− �−1

and I are the unit matrices. Furthermore, in terms of the
matrix-continued fractions �n�0�, one can also estimate the
smallest nonvanishing eigenvalue �1 given by the smallest
root of the secular equation22,34

det��1I − S� = 0, �A3�

where the matrix S is defined as

S = − �N
−1�Q1 + Q1

+�2�0�Q2
−�

��I + �
n=2

�

�
m=1

n−1

Qm
+ �

k=1

n−1

�n−k+1
2 �0�Qn−k+1

− �−1

,

i.e., �1 is the smallest nonvanishing eigenvalue of the matrix
S. The inverse of �1 corresponds to the reversal time of the
magnetization �.
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